منابع مشابه
Optomechanical cavity cooling of an atomic ensemble.
We demonstrate cavity sideband cooling of a single collective motional mode of an atomic ensemble down to a mean phonon occupation number ⟨n⟩(min)=2.0(-0.3)(+0.9). Both ⟨n⟩(min) and the observed cooling rate are in good agreement with an optomechanical model. The cooling rate constant is proportional to the total photon scattering rate by the ensemble, demonstrating the cooperative character o...
متن کاملSingle-photon atomic cooling.
We report the cooling of an atomic ensemble with light, where each atom scatters only a single photon on average. This is a general method that does not require a cycling transition and can be applied to atoms or molecules that are magnetically trapped. We discuss the application of this new approach to the cooling of hydrogenic atoms for the purpose of precision spectroscopy and fundamental te...
متن کاملKinetics of the evaporative cooling of an atomic beam
We compare two distinct models of evaporative cooling of a magnetically guided atomic beam: a continuous one, consisting in approximating the atomic distribution function by a truncated equilibrium distribution, and a discrete-step one, in which the evaporation process is described in terms of successive steps consisting in a truncation of the distribution followed by rethermalization. Calculat...
متن کاملCooling Atomic Gases With Disorder.
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europhysics Letters (EPL)
سال: 2005
ISSN: 0295-5075,1286-4854
DOI: 10.1209/epl/i2005-10181-4